65 research outputs found

    Saethre-Chotzen mutations cause TWIST protein degradation or impaired nuclear location

    Get PDF
    International audienceH-TWIST belongs to the family of basic helix-loop-helix (bHLH) transcription factors known to exert their activity through dimer formation. We have demonstrated recently that mutations in H-TWIST account for Saethre-Chotzen syndrome (SCS), an autosomal dominant craniosynostosis syndrome characterized by premature fusion of coronal sutures and limb abnormalities of variable severity. Although insertions, deletions, nonsense and missense mutations have been identified, no genotype-phenotype correlation could be found, suggesting that the gene alterations lead to a loss of protein function irrespective of the mutation. To assess this hypothesis, we studied stability, dimerization capacities and subcellular distribution of three types of TWIST mutant. Here, we show that: (i) nonsense mutations resulted in truncated protein instability; (ii) missense mutations involving the helical domains led to a complete loss of H-TWIST heterodimerization with the E12 bHLH protein in the two-hybrid system and dramatically altered the ability of the TWIST protein to localize in the nucleus of COS-transfected cells; and (iii) in-frame insertion or missense mutations within the loop significantly altered dimer formation but not the nuclear location of the protein. We conclude that at least two distinct mechanisms account for loss of TWIST protein function in SCS patients, namely protein degradation and subcellular mislocalization

    Rare and Frequent Promoter Methylation, Respectively, of TSHZ2 and 3 Genes That Are Both Downregulated in Expression in Breast and Prostate Cancers

    Get PDF
    Neoplastic cells harbor both hypomethylated and hypermethylated regions of DNA. Whereas hypomethylation is found mainly in repeat sequences, regional hypermethylation has been linked to the transcriptional silencing of certain tumor suppressor genes. We attempted to search for candidate genes involved in breast/prostate carcinogenesis, using the criteria that they should be expressed in primary cultures of normal breast/prostate epithelial cells but are frequently downregulated in breast/prostate cancer cell lines and that their promoters are hypermethylated.We identified several dozens of candidates among 194 homeobox and related genes using Systematic Multiplex RT-PCR and among 23,000 known genes and 23,000 other expressed sequences in the human genome by DNA microarray hybridization. An additional examination, by real-time qRT-PCR of clinical specimens of breast cancer, further narrowed the list of the candidates. Among them, the most frequently downregulated genes in tumors were NP_775756 and ZNF537, from the homeobox gene search and the genome-wide search, respectively. To our surprise, we later discovered that these genes belong to the same gene family, the 3-member Teashirt family, bearing the new names of TSHZ2 and TSHZ3. We subsequently determined the methylation status of their gene promoters. The TSHZ3 gene promoter was found to be methylated in all the breast/prostate cancer cell lines and some of the breast cancer clinical specimens analyzed. The TSHZ2 gene promoter, on the other hand, was unmethylated except for the MDA-MB-231 breast cancer cell line. The TSHZ1 gene was always expressed, and its promoter was unmethylated in all cases.TSHZ2 and TSHZ3 genes turned out to be the most interesting candidates for novel tumor suppressor genes. Expression of both genes is downregulated. However, differential promoter methylation suggests the existence of distinctive mechanisms of transcriptional inactivation for these genes

    Characterization of sequences in human TWIST required for nuclear localization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Twist is a transcription factor that plays an important role in proliferation and tumorigenesis. Twist is a nuclear protein that regulates a variety of cellular functions controlled by protein-protein interactions and gene transcription events. The focus of this study was to characterize putative nuclear localization signals (NLSs) <sup>37</sup>RKRR<sup>40 </sup>and <sup>73</sup>KRGKK<sup>77 </sup>in the human TWIST (H-TWIST) protein.</p> <p>Results</p> <p>Using site-specific mutagenesis and immunofluorescences, we observed that altered TWIST<sup>NLS1 </sup>K38R, TWIST<sup>NLS2 </sup>K73R and K77R constructs inhibit nuclear accumulation of H-TWIST in mammalian cells, while TWIST<sup>NLS2 </sup>K76R expression was un-affected and retained to the nucleus. Subsequently, co-transfection of TWIST mutants K38R, K73R and K77R with E12 formed heterodimers and restored nuclear localization despite the NLSs mutations. Using a yeast-two-hybrid assay, we identified a novel TWIST-interacting candidate TCF-4, a basic helix-loop-helix transcription factor. The interaction of TWIST with TCF-4 confirmed using NLS rescue assays, where nuclear expression of mutant TWIST<sup>NLS1 </sup>with co-transfixed TCF-4 was observed. The interaction of TWIST with TCF-4 was also seen using standard immunoprecipitation assays.</p> <p>Conclusion</p> <p>Our study demonstrates the presence of two putative NLS motifs in H-TWIST and suggests that these NLS sequences are functional. Furthermore, we identified and confirmed the interaction of TWIST with a novel protein candidate TCF-4.</p

    Oxr1 Is Essential for Protection against Oxidative Stress-Induced Neurodegeneration

    Get PDF
    Oxidative stress is a common etiological feature of neurological disorders, although the pathways that govern defence against reactive oxygen species (ROS) in neurodegeneration remain unclear. We have identified the role of oxidation resistance 1 (Oxr1) as a vital protein that controls the sensitivity of neuronal cells to oxidative stress; mice lacking Oxr1 display cerebellar neurodegeneration, and neurons are less susceptible to exogenous stress when the gene is over-expressed. A conserved short isoform of Oxr1 is also sufficient to confer this neuroprotective property both in vitro and in vivo. In addition, biochemical assays indicate that Oxr1 itself is susceptible to cysteine-mediated oxidation. Finally we show up-regulation of Oxr1 in both human and pre-symptomatic mouse models of amyotrophic lateral sclerosis, indicating that Oxr1 is potentially a novel neuroprotective factor in neurodegenerative disease

    Diagnosing mucopolysaccharidosis IVA

    Get PDF
    Mucopolysaccharidosis IVA (MPS IVA; Morquio A syndrome) is an autosomal recessive lysosomal storage disorder resulting from a deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS) activity. Diagnosis can be challenging and requires agreement of clinical, radiographic, and laboratory findings. A group of biochemical genetics laboratory directors and clinicians involved in the diagnosis of MPS IVA, convened by BioMarin Pharmaceutical Inc., met to develop recommendations for diagnosis. The following conclusions were reached. Due to the wide variation and subtleties of radiographic findings, imaging of multiple body regions is recommended. Urinary glycosaminoglycan analysis is particularly problematic for MPS IVA and it is strongly recommended to proceed to enzyme activity testing even if urine appears normal when there is clinical suspicion of MPS IVA. Enzyme activity testing of GALNS is essential in diagnosing MPS IVA. Additional analyses to confirm sample integrity and rule out MPS IVB, multiple sulfatase deficiency, and mucolipidoses types II/III are critical as part of enzyme activity testing. Leukocytes or cultured dermal fibroblasts are strongly recommended for enzyme activity testing to confirm screening results. Molecular testing may also be used to confirm the diagnosis in many patients. However, two known or probable causative mutations may not be identified in all cases of MPS IVA. A diagnostic testing algorithm is presented which attempts to streamline this complex testing process

    Mutations in a novel gene Dymeclin (FLJ20071) are responsible for Dyggve-Melchior-Clausen syndrome

    Full text link

    Saethre-Chotzen mutations cause TWIST protein degradation or impaired nuclear location

    No full text

    Fibroblast growth factor receptor 3 mutation in nonsyndromic coronal synostosis: clinical spectrum, prevalence, and surgical outcome

    No full text
    International audienceA recurrent point mutation in the fibroblast growth factor receptor 3 gene that converts proline 250 into arginine has been reported recently in cases of apparently nonsyndromic coronal craniosynostosis. The goal of the present study was to examine the phenotype of patients in whom this mutation was present, to determine the prevalence of the condition, and to assess the functional and the morphological outcome of the surgically treated patients

    Craniosynostosis and fetal exposure to sodium valproate.

    No full text
    International audienceFetal valproate syndrome affects one in 10 children born to mothers who ingest sodium valproate regularly during pregnancy. It has been described as producing a combination of typical dysmorphic features and major organ system anomalies. Trigonocephaly is caused by premature fusion of the metopic suture and has not previously been described as a typical feature of the syndrome. The authors reviewed the cases of 2,220 children with craniosynostosis to examine the effect of maternal sodium valproate use on the fetus

    Succinate dehydrogenase deficiency in human.

    No full text
    International audienceMitochondrial succinate dehydrogenase (SDH) consists merely of four nuclearly encoded subunits. It participates in the electron transfer in the respiratory chain and in succinate catabolism in the Krebs cycle. Mutations in the four genes, SDHA, B, C and D, have been reported, resulting in strikingly diverse clinical presentations. So far, SDHA mutations have been reported to cause an encephalomyopathy in childhood, while mutations in the genes encoding the other three subunits have been associated only with tumour formation. Following a brief description of SDH genes and subunits, we examine the properties and roles of SDH in the mitochondria. This allows further discussion of the several hypotheses proposed to account for the different clinical presentations resulting from impaired activity of the enzyme. Finally we stress the importance of SDH as a target and/or marker in a number of diseases and the need to better delineate the consequences of SDH deficiency in humans
    • …
    corecore